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2.1 Introduction

• Free Vibration occurs when a system oscillates 

only under an initial disturbance with no external 

forces acting after the initial disturbance

• Undamped vibrations result when amplitude of 

motion remains constant with time (e.g. in a 

vacuum)

• Damped vibrations occur when the amplitude of 

free vibration diminishes gradually overtime, due 

to resistance offered by the surrounding medium 

(e.g. air)
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2.1 Introduction

• Several mechanical and structural 

systems can be idealized as single 

degree of freedom systems, for example, 

the mass and stiffness of a system
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Equation of motion

• Newton’s second law

• Principle of Conservation of 

Energy 

• Rayleigh method

• Lagrange equation

• D’Alembert principle

5
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If mass m is displaced a distance        when acted 

upon by a resultant force       in the same direction,

Free Vibration of an Undamped Translational    

System
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If mass m is constant, this equation reduces to
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Free Vibration of an Undamped Rotational 

System

For a rigid body undergoing rotational motion, 

Newton’s Law gives

( )M t J

where      is the resultant moment acting on the 

body and     and                      are the resulting 

angular displacement and angular acceleration, 

respectively.
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Newton’s second law: SDOF

8

( )F t mx
Undamped Translational System
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Newton’s second law: SDOF

9

( )M t J
Undamped Rotational System
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Newton’s second law: SDOF

10

( )F t mx

kx mx 

0mx kx 

Equation of motion(free vibration of SDOF) 
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Undamped free vibration of SDOF

11

Laplace transform

Natural frequency of 
n k m 
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Undamped free vibration of SDOF

12

where

Inverse Laplace, Solution of the governing equation

or

(1)

(2)
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Undamped free vibration of SDOF
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A system is said to be conservative if no energy is 

lost due to friction or energy-dissipating nonelastic 

members.

Principle of Conservation of Energy

If no work is done on the conservative system by 

external forces, the total energy of the system 

remains constant. Thus the principle of 

conservation of energy can be expressed as:

 constant

( ) 0

T U

d
T U

dt

 

 or
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Principle of Conservation of Energy: 

SDOF 

The kinetic and potential energies are given by:

21
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Equation of motion(free vibration of SDOF) 



© 2005 Pearson Education South Asia Pte Ltd.
16

Free Vibration of  an Undamped Torsinal 

System

Torsional Spring Constant:
4

32
t

Gd
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
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( )M t J

For a rigid body undergoing 

rotational motion, Newton’s Law gives

tk J  

0tJ k  

Equation of motion(free vibration of SDOF) 
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Example 2.8

Effect of Mass on ωn of a Spring

Determine the effect of the mass of the spring on 

the natural frequency of the spring-mass system 

shown in the figure below.
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Example 2.8 Solution
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The kinetic energy of the spring element of length 

dy is

where ms is the mass of the spring. The total 

kinetic energy of the system can be expressed as
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Example 2.8 Solution

(E.3)
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The total potential energy of the system is given by
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Example 2.8 Solution

we obtain the expression for the natural 

frequency:

(E.7)
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Thus the effect of the mass of spring can be 

accounted for by adding one-third of its mass to 

the main mass.
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where c = damping constant

Free Vibration with Viscous Damping: SDOF

• Damping force: F cx 

Newton’s law yields the equation of motion:

0

mx cx kx

mx cx kx

  

  or
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Characteristic equation
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Free Vibration with Viscous Damping: SDOF

• Critical Damping Constant and Damping Ratio:

2 4 0

2 2 2c n

c mk

k
c mk m m

m


 
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The critical damping cc is defined as the value of 

the damping constant c for which the radical in 

becomes zero:

or

The damping ratio ζ is defined as:

c

c

c
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Case1. 

Free Vibration with Viscous Damping: SDOF

(0 1   or       )cc c  

Assuming that ζ ≠ 0, consider the following 3 cases:

For this condition, Poles is negative and the roots 

are:
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Free Vibration with Viscous Damping: SDOF

where (C’1,C’2), (X,Φ), and (X0, Φ0) are arbitrary 

constants to be determined from initial conditions.
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and the solution can be written in different forms:
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Free Vibration with Viscous Damping: SDOF
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and hence the solution becomes

For the initial conditions at t = 0,

Eq. describes a damped harmonic motion. Its 

amplitude decreases exponentially with time, as 

shown in the figure below. 
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Free Vibration with Viscous Damping: SDOF

Underdamped Solution

0 0
0

2
( ) cos sin

1

nt n
d d

n

x x
x t e x t t

 
 

 


  

  
  



© 2005 Pearson Education South Asia Pte Ltd.
27

Due to repeated roots, the solution of Eq.(2.59) is 

given by

Free Vibration with Viscous Damping: SDOF
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In this case, the two roots(Poles) are:
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Due to repeated roots, the solution of critical 

damped system is given by

Free Vibration with Viscous Damping: SDOF
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In this case, the solution Eq.(2.69) is given by:

The roots are real and distinct and are given by:

Free Vibration with Viscous Damping: SDOF
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Since                            , the motion will eventually 

diminish to zero, as indicated in the figure below.

Free Vibration with Viscous Damping: SDOF
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Solution of Underdamped free vibration:
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The logarithmic decrement can be obtained
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Hence,
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Home work - 1

33

Determine the differential equation of motion  and 

the equivalent stiffness for the system (N/m) of Figure 
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Home work - 2

34

For free vibration of underdamped system( = 0.8) as shown in Figure.

Determine stiffness of system 
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Home work - 3

35

The free response of the undamped system of Figure. 

Determine

- Natural frequency, Initial velocity and Initial displacement
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Home work - 4

36

The free response of the underdamped system in Figure.

Calculate the damping ratio, logarithm decrement 
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Chapter summaries

• Equation of motion for SDOF undamped 

system

• Equation of motion for SDOF damped system
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Chapter summaries

• Undamped free vibration response

• Overdamped free vibration response

• Critically damped free vibration response
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Chapter summaries

• Underdamped free vibration response

• Logarithm decrement

39


